Pole trójkąta jest równe 36. Poprowadzono dwa odcinki równoległe do jednego boku trójkąta, które podzieliły każdy z pozostałych dwóch boków na trzy równe części (zob. rysunek). Oblicz pole trapezu, którego podstawami są te odcinki.
Strona główna/
Pytania /Q 2874
W trakcie
Dane: |AG| = |GD| = |DC|
|BF| = |FE| = |EC|
Rozwiązanie:
P△ABC = 36
△CGF ∼ △ABC w skali k1 = 2/3, więc P△CGF = 4/9 ⋅ 36 = 16
△CDE ∼ △CGF w skali k2 = 1/2,
więc P△CDE = 1/4 ⋅ 16 = 4, zatemPDEFG = P△CGF − P△CDE = 12
Trapez ma pole równe 12.